Publication Cover
Drying Technology
An International Journal
Volume 27, 2009 - Issue 2
615
Views
136
CrossRef citations to date
0
Altmetric
Original Articles

Influence of the Applied Acoustic Energy on the Drying of Carrots and Lemon Peel

, , &
Pages 281-287 | Published online: 09 Feb 2009
 

Abstract

The application of power ultrasound could constitute a way of improving traditional convective drying systems. The different effects produced by the application of power ultrasound may influence the drying rate without provoking any significant increase in product temperature. Due to the fact that the effect of power ultrasound is product dependent, the aim of this work was to address the influence of the applied acoustic energy on the convective drying of carrot and lemon peel.

Convective drying kinetics of carrot cubes (side 8.5 mm) and lemon peel slabs (thickness 7 mm) were carried out at 40°C and 1 m/s by applying different levels of acoustic power density: 0, 4, 8, 12, 16, 21, 25, 29, 33, and 37 (kW/m3). The application of power ultrasound during drying was carried out using an airborne ultrasonic transducer (21.7 kHz). Drying kinetics were described considering a diffusion model.

In both products, the application of power ultrasound improved the effective moisture diffusivity (De ). The improvement was linearly proportional to the applied acoustic power density. In the case of lemon peel, the effects of power ultrasound were found over all the range tested (0–37 kW/m3), whereas in the case of carrot, it was necessary to apply an acoustic power density of over 8–12 kW/m3 to be able to observe the influence. The more intense effect of acoustic energy in lemon peel drying may be explained by the fact that lemon peel is a more porous product than carrot.

ACKNOWLEDGEMENTS

The authors acknowledge the Ministerio de Educación y Ciencia for the financial support of Project AGL2006-14146-C02-01/ALI.

Notes

a,b,c,d Homogeneous groups established from LSD intervals (p < 0.05).

a,b,c,d,e Homogeneous groups established from LSD intervals (p < 0.05).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.