Publication Cover
Drying Technology
An International Journal
Volume 28, 2010 - Issue 12
276
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Exergetic Analysis of Textile Convective Drying with Stenters by Subsystem Models: Part 2—Parametric Study on Exergy Analysis

, &
Pages 1368-1376 | Published online: 24 Nov 2010
 

Abstract

In this study, the effects of exhaust air humidity ratio, the residual moisture content of fabric outlet, and the temperature of the drying air on the exergy destruction and efficiency of stenters were investigated. The exergy efficiencies of the direct gas heated stenter (DGHS) and hot oil heated stenter (HOHS) were calculated to be varying from 8.5 to 17.5% and from 6.8 to 14.0%, depending on the exhaust air humidity ratio, respectively. The increase in the drying air temperature led to an increase in the exergy efficiency, especially in the constant rate and second rate period of the drying. On the other hand, the application of the gradual temperature method caused the highest total exergy efficiency due to the highest drying rates in the first chambers where considerably high air temperatures were set. Overdrying resulted in the higher irreversibility due to the increase in the fuel consumption in the falling rate period of drying. Thus, the exergy efficiency decreased drastically.

ACKNOWLEDGMENTS

The authors acknowledge May Tekstil A.Ş. and ASOS Company for their support in obtaining the measured data in the analyses.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.