Publication Cover
Drying Technology
An International Journal
Volume 29, 2011 - Issue 2
541
Views
91
CrossRef citations to date
0
Altmetric
Original Articles

Improvement of Convective Drying of Carrot by Applying Power Ultrasound—Influence of Mass Load Density

, , &
Pages 174-182 | Published online: 03 Jan 2011
 

Abstract

Power ultrasound is considered to be a novel and promising technology with which to improve heat and mass transfer phenomena in drying processes. The aim of this work was to contribute to the knowledge of ultrasound application to air drying by addressing the influence of mass load density on the ultrasonically assisted air drying of carrot. Drying kinetics of carrot cubes were carried out (in triplicate) with or without power ultrasound application (75 W, 21.7 kHz) at 40°C, 1 m/s, and several mass load densities: 12, 24, 36, 42, 48, 60, 72, 84, 96, 108, and 120 kg/m3. The experimental results showed a significant (p < 0.05) influence of both factors, mass load density and power ultrasound application, on drying kinetics. As expected, the increase of mass load density did not affect the effective moisture diffusivity (De, m2/s) but produced a reduction of the mass transfer coefficient (k, kg water/m2/s). This was explained by considering perturbations in the air flow through the drying chamber thus creating preferential pathways and, as a consequence, increasing external mass transfer resistance. On the other hand, it was found that the power ultrasound application increased the mass transfer coefficient and the effective moisture diffusivity regardless of the mass load density used. However, the influence of power ultrasound was not significant at the highest mass load densities tested (108 and 120 kg/m3), which may be explained from the high ratio (acoustic energy/sample mass) found under those experimental conditions. Therefore, the application of ultrasound was considered as a useful technology with which to improve the convective drying, although its effects may be reduced at high mass load densities.

ACKNOWLEDGMENTS

The authors acknowledge the financial support of the Spanish Ministry of Science and Technology (DPI2009-14549-C04-04) and the Universidad Politécnica de Valencia (PAID-06-08-3180).

Notes

Subscripts a, b and t, u, v, w, x, y, z show homogeneous groups established from LSD intervals (p < 0.05).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.