Publication Cover
Drying Technology
An International Journal
Volume 29, 2011 - Issue 5
252
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Drying of Osmosed Cantaloupe: Effect of Polyols on Drying and Water Mobility

, &
Pages 527-535 | Published online: 30 Mar 2011
 

Abstract

Cantaloupe slices were sequentially immersed in 40 and 50 °Brix sucrose solutions for 24 h each. Partial replacement of the 50 °Brix sucrose solution with one of two polyhydric alcohols (sorbitol or glycerol) at 10 or 15% (w/v) was also performed along with a 0% (w/v) polyhydric alcohol treatment and a 10% (v/v) invert sugar partial replacement of the 50 °Brix solution as a control and a reference, respectively. Solids gain (SG) and water loss (WL) were determined up to 48 h later. Conversely, the treatment with 10 and 15% (w/v) sorbitol and the reference showed a significantly higher SG and a lower WL than the control (p < 0.05). The treatments with 10 and 15% (w/v) glycerol presented a significantly lower SG and higher WL than the control (p < 0.05). Increasing concentrations of polyol led to an increase in both the WL and the SG. The osmosed cantaloupe was then dried in a hot air dryer at 60°C, where the numerical drying rate was observed to be as follows: control > 10% sorbitol > 15% sorbitol > 10% glycerol > 15% glycerol > reference, but these differences at each moisture ratio were not significantly different (p > 0.05). Page's model showed a better goodness of fit with the experimental data for all treatments than did the Henderson and Pabis model. The addition of either of the two polyhydric alcohols resulted in a decreased longitudinal relaxation time (T 1), as monitored using nuclear magnetic resonance (NMR), indicating the decreased mobility of water molecules. Among all treatments evaluated, the sensory analysis derived acceptance scores for the product treated with 10% (w/v) sorbitol were not significantly different from that of the reference (p > 0.05). This may due to the ability of invert sugar and polyols to act as a humectant.

ACKNOWLEDGMENTS

This research was supported by funding from the Thailand Research Fund (project no. MRG-WII505S011) and Chulalongkorn University. The authors also thank Dr. Robert Butcher for his English proofreading.

Notes

Different superscript letters in the same column indicate significant difference (p < 0.05).

Different superscript letters in the same column indicate significant difference (p < 0.05).

Different superscript letters in the same row indicate significant difference (p < 0.05).

ns = no significant differences (p > 0.05) in the same row.

Different superscript letters in the same row indicate significant difference (p < 0.05).

ns = no significant differences (p > 0.05) in the same row.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.