694
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

Characteristics of Single Droplet Impact on Cold Plate Surfaces

, , &
Pages 1756-1762 | Published online: 14 Nov 2012
 

Abstract

Droplet collision with cold solid surfaces is a fundamental phenomenon observed in low-temperature processes. In this work, a single droplet impacting on a cold surface was investigated by analyzing changes in droplet shape and dimensions recorded with a high-speed camera. At low surface temperatures (−5°C and −10°C), the droplet spreads in a very short period upon impact and then retracts, but to a diameter larger than that at room temperature, dependent on surface material property and texture. Higher impact velocity expands the spreading diameter and promotes the retraction to an extent, but at lower surface temperature (i.e., −20°C) the droplet is quickly frozen with smaller change in diameter on the stainless-steel surface rather than on the Teflon plate. The change of droplet shape upon impacting on a 30° inclined surface was also studied. The surface texture of the stainless-steel plate produced by the polishing process has an obvious effect on the droplet dimension retraction. A proper selection of wall material and process conditions can alleviate or prevent wall deposition.

ACKNOWLEDGMENTS

We are grateful to Prof. Arun S. Mujumdar, NUS, for his constructive suggestions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.