Publication Cover
Drying Technology
An International Journal
Volume 31, 2013 - Issue 3
221
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Optimization of Freeze-Drying Cycle for Tert-Butanol–Based Formulations of Ibuprofen

, , , &
Pages 308-313 | Published online: 28 Feb 2013
 

Abstract

We carried out the formulation set-up and thermodynamics as well as morphological characterization of two systems: an aqueous-based formulation and an organic-solvent-based formulation with tert-butanol (TBA) at eutectic composition (20% TBA + water 80% by mass) containing ibuprofen as the model pharmaceutical active component. The goal was to carry out the optimization of a soft freeze-drying cycle for heat-sensitive drugs. The organic-based ibuprofen formulation had a glass transition temperature significantly higher compared to that of the aqueous-based ibuprofen formulation, which allowed much higher sublimation temperatures for these systems in comparison with the pure water-based ibuprofen formulations. The morphological study of the frozen organic-based formulation showed unexpected behavior in comparison with previous literature data reported for water-based formulations. For the same freezing rates, the mean diameters of the solvent crystals of organic-based formulations were much larger than that of ice crystals of aqueous-based formulation, which led to a freeze-dried matrix of higher permeability. In contrast to what was observed with the aqueous-based formulations, the freezing rates, in the range of classical industrial values investigated, had no significant effect on the supercooling of the liquid ibuprofen formulations tested as well as on the nucleation temperatures and on the morphology of the organic solvent crystals. All these singular characteristics, with lower sublimation enthalpies and higher equilibrium vapor pressure values previously measured with the same formulations in our laboratory, explain the large reduction of sublimation times observed during the soft freeze-drying processes for heat-sensitive drugs with organic (TBA)-based formulations.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.