Publication Cover
Drying Technology
An International Journal
Volume 31, 2013 - Issue 16
224
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Convective Drying Analysis of a Single Wheat Kernel Based on an Irreversible Thermodynamics Model

, , &
Pages 1979-1993 | Published online: 18 Nov 2013
 

Abstract

The application of irreversible thermodynamics offers a formal treatment for drying analysis that allows the evaluation of intra-particle or intra-medium temperature and moisture profiles, and enthalpy, liquid, and vapor fluxes. However, researchers have claimed that its implementation is complex. This work presents a simple methodology for modeling, solving, and validating the drying equations, as applied to wheat kernels, and for obtaining the inherent and usually unavailable transport coefficients. To clarify and simplify the ensuing physical analysis, a spherical shape and isotropy were assumed. Additionally, solutions obtained with both Dirichlet and convective boundary conditions were analyzed and compared against experimental data. The thermal and hydro-stresses depend heavily on internal vapor and liquid fluxes and on the respective drying evaporation fronts, all of which were evaluated and compared.

ACKNOWLEDGMENT

The authors acknowledge the financial support of the National Council for Scientific and Technological Development – CNPq.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.