Publication Cover
Drying Technology
An International Journal
Volume 32, 2014 - Issue 7
255
Views
21
CrossRef citations to date
0
Altmetric
Regular Articles

Analysis of Moisture Transfer During the Drying of Clay Tiles with Particular Reference to an Estimation of the Time-Dependent Effective Diffusivity

, &
Pages 829-840 | Published online: 29 Apr 2014
 

Abstract

The description of the drying process was reduced to the establishment of a series of theoretical and empirical drying models. The complex processes of simultaneous moisture and heat transfer, which are often nonstationary, and the distinct nature and properties of the material to be dried further complicate the description of the drying process. Three theories—diffusion theory, capillary flow theory, and evaporation–condensation theory—have won general recognition for the explanation of moisture transfer in porous media. The mechanisms of moisture movement during drying in the constant and especially in the falling drying period are rather complex and, hitherto, there have been no generally accepted explanations that could identify the exact transition between possible drying mechanisms, such as liquid movement due to capillary forces, liquid diffusion due to concentration gradients, liquid and vapor flow due to differences in total pressure, vapor diffusion due to difference in vapor concentration, vapor diffusion due to partial vapor pressure gradients, Knudsen diffusion, thermodiffusion, and the evaporation–condensation mechanism. The goal of this study was to find a way to better understand the different drying mechanisms, to identify the exact transition between them, and to estimate the time-dependent effective diffusivity. The results presented in this article confirmed that the effective diffusivity represents an overall mass transport property of moisture that includes all possible moisture transport mechanisms that are simultaneously controlling the moisture migration process in a material during drying. The experimental investigations were performed on clay tiles in a laboratory recirculation dryer, for which the drying parameters (humidity, temperature, and velocity) could be programmed, controlled, and monitored during drying.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.