271
Views
21
CrossRef citations to date
0
Altmetric
Special Issue Articles

Innovative Steam Drying of Empty Fruit Bunch with High Energy Efficiency

, &
Pages 395-405 | Published online: 30 Oct 2014
 

Abstract

Empty fruit bunch (EFB) is one of the solid wastes from crude palm oil mills and has the lowest value for utilization compared to other solid wastes. To achieve an efficient utilization of EFB, drying is considered the first crucial process due to the high moisture content of EFB. In this study, EFB drying based on exergy recovery is proposed to achieve high energy efficiency. A fluidized bed is adopted as the main dryer. The proposed model is evaluated in terms of energy efficiency, especially regarding the influence of target moisture content and fluidization velocity. Up to 92% of the energy involved in the drying process can be recirculated. The total energy consumption for drying decreases as the target moisture content decreases, though there is no significant impact of fluidization velocity to total energy consumption. In addition, the required total length of the heat transfer tubes immersed inside the fluidized bed dryer is calculated because it relates to fluidization performance and economic issues. Lower target moisture content results in a longer heat transfer tube, and higher fluidization velocity leads to a shorter heat transfer tube.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.