349
Views
7
CrossRef citations to date
0
Altmetric
Regular Articles

Mapping the Shrinkage Behavior of Skim Milk Droplets During Convective Drying

, , &
Pages 1101-1113 | Published online: 27 May 2015
 

Abstract

This article investigated the influence of drying rate on the shrinkage behavior of skim milk (SMP) droplets during convective drying, behavior which was then mapped using the Peclet number, Pe. The objective was to demonstrate the potential use of the Peclet number to predict the particle formation pathway during drying by defining a material-specific perfect shrinkage threshold using only the knowledge of initial process conditions and droplet characteristics. The shrinkage mapping was undertaken by drying relatively large and statically suspended droplets through adjustment of the drying air humidity. Its influence on droplet shrinkage behavior was observed through droplet diameter profile. Analysis of lactose, a non-skin-forming material, revealed perfect shrinkage behavior. Experiments with SMP, a skin-forming material, revealed that deviation from perfect shrinkage behavior occurred beyond the Peclet number threshold of 0.23–1.27 when droplets and the solid diffusion front were modelled as an equivalent sphere. The developed threshold was further used to predict the shrinkage behavior of atomized SMP droplets undergoing rapid drying in a spray tower.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.