Publication Cover
Drying Technology
An International Journal
Volume 35, 2017 - Issue 3
1,006
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

CFD modeling of a pilot-scale countercurrent spray drying tower for the manufacture of detergent powder

, , , , , & show all
Pages 281-299 | Published online: 30 Mar 2016
 

ABSTRACT

A steady-state, three-dimensional, multiphase computational fluid dynamics (CFD) modeling of a pilot-plant countercurrent spray drying tower is carried out to study the drying behavior of detergent slurry droplets. The software package ANSYS Fluent is employed to solve the heat, mass, and momentum transfer between the hot gas and the polydispersed droplets/particles using the Eulerian–Lagrangian approach. The continuous-phase turbulence is modeled using the differential Reynolds stress model. The drying kinetics is modeled using a single-droplet drying model, which is incorporated into the CFD code using user-defined functions (UDFs). Heat loss from the insulated tower wall to the surrounding is modeled by considering thermal resistances due to deposits on the inside surface, wall, insulation, and outside convective film. For the particle–wall interaction, the restitution coefficient is specified as a constant value as well as a function of particle moisture content. It is found that the variation in the value of restitution coefficient with moisture causes significant changes in the velocity, temperature, and moisture profiles of the gas as well as the particles. Overall, a reasonably good agreement is obtained between the measured and predicted powder temperature, moisture content, and gas temperature at the bottom and top outlets of the tower; considering the complexity of the spray drying process, simplifying assumptions made in both the CFD and droplet drying models and the errors associated with the measurements.

Acknowledgment

The authors would like to thank Mr. Zayeed Alam, Procter and Gamble, for his support and encouragement.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.