Publication Cover
Drying Technology
An International Journal
Volume 35, 2017 - Issue 9
401
Views
17
CrossRef citations to date
0
Altmetric
ARTICLES

Lignite drying with solar energy: Thermodynamic analysis and case study

, , , , &
Pages 1117-1129 | Published online: 11 May 2017
 

ABSTRACT

As a clean, free, and nondepleting source, solar energy has become the focus of increasing attention in the drying industry. A lignite-fired power plant integrated with a solar dryer (LPPS), in which solar energy is used to dry lignite and the predried lignite is used to generate electricity, is analyzed theoretically in this paper. The aim of this study is to evaluate the energy performance of solar drying under different system parameters. Thermodynamic models, with which the second-law efficiency of the LPPS could be maximized, were developed. A reference case with three kinds of lignite as input fuel was analyzed to quantify the system performance. The first-law and second-law efficiencies were obtained. The solar-to-electric conversion efficiency in the LPPS is more than 34%. Therefore, solar drying is a potential technology that should be promoted in lignite-deposited areas. Moreover, the influence of main parameters on the performance of system was analyzed. Dryer efficiency is determined to have significant influence on the solar-to-electric conversion efficiency.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.