Publication Cover
Drying Technology
An International Journal
Volume 35, 2017 - Issue 9
175
Views
15
CrossRef citations to date
0
Altmetric
ARTICLES

Kinetics of microwave heating and drying of drilling fluids and drill cuttings

, , &
Pages 1130-1140 | Published online: 11 May 2017
 

ABSTRACT

Drill cutting decontamination by microwave drying has been studied over the past few years and has proved to be a promising technology. This study aimed to investigate fundamental aspects of kinetics of heating and drying of drilling fluids and drill cuttings by microwaves. The microwave heating curve of cuttings free of fluid, drilling fluids, and pure organic compounds usually used in the formulation of these fluids was evaluated to understand the behavior of each component in microwave cutting decontamination. Furthermore, commercial software was used to describe the heating kinetics of the drilling fluids used in this study. The drying kinetics of cuttings contaminated with these drilling fluids was also studied at three temperatures of control. Some classic models of conventional drying of solids were used to describe the removal kinetics of the liquid components present in contaminated cuttings (water and organic compounds). Important aspects related to the interaction of these components in the drying operation and solid heating, water evaporation, and the drag of organic compounds were investigated. Both drilling fluids showed a very similar kinetic heating. Pure organic bases did not show a significant heating. For the same drying time, the removal of paraffin is more intense than the olefin. In respect to organic component removal from cuttings contaminated with both fluids, the kinetic drying curves are similar. The Page model was the one that best describes the drying operation of drill cuttings contaminated with both drilling fluids. The microwave drying model (MDM) model is proposed in this work as a simple modification in the Henderson–Pabis model: the addition of a third parameter. The incorporation of this parameter enabled a better fit of the experimental data. Computational simulations show an electric field with symmetrical patterns for the two BR-MUL fluids analyzed.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.