Publication Cover
Drying Technology
An International Journal
Volume 35, 2017 - Issue 15
321
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

On the investigation into the kinetics of the ultrasound-assisted atmospheric freeze drying of eggplant

, , & ORCID Icon
Pages 1818-1831 | Published online: 28 Jun 2017
 

ABSTRACT

Atmospheric freeze drying is a highly attractive process for the dehydration of thermosensitive products, like food, due to the fact that water is removed at low temperature by sublimation. Unfortunately, drying times can be very long because of the internal resistance of the product to vapor diffusion: power ultrasound can be an effective means of accelerating the process, thus reducing the operating cost. The aim of this study was to assess the effect of air temperature and velocity, ultrasound power and sample size on the drying kinetics of eggplant (Solanum melongena L.) samples and, afterward, to analyze in silico an industrial process. Experiments were performed under various conditions regarding air temperature (−5, −7.5, −10°C), velocity (2 and 5 m s−1), power ultrasound (0, 10.3, 20.5 kW m−3, 21.9 kHz), and sample size. Drying rate was measured experimentally. The air velocity showed no relevant effects on the drying kinetics, and the effect of air temperature was slight when compared to the marked reduction in the drying time obtained when ultrasound was applied. The uniformly retreating interface model was modified to account for the cubic shape of the samples and used to establish the kinetic parameters, in particular to evaluate water diffusivity in the dried product, searching for the best fit between measured and calculated moisture content. The model was finally used to optimize the process in silico, considering an industrial unit as test case. In this case, it appeared that power ultrasound can increase the productivity of a tunnel dryer up to four or five times, and it allows the operational and fixed costs of the plant to be reduced significantly.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.