Publication Cover
Drying Technology
An International Journal
Volume 38, 2020 - Issue 4
1,077
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Specific energy consumption of vacuum filtration: Experimental evaluation using a pilot-scale horizontal belt filter

, , , , , , & show all
Pages 460-475 | Received 04 Dec 2018, Accepted 07 Feb 2019, Published online: 07 Mar 2019
 

Abstract

Horizontal vacuum belt filters are used for continuous solid–liquid separation in a wide variety of industrial processes. Despite the low pressure difference (usually Δp < 0.8 bar), the high air pumping requirement to maintain the pressure difference results in considerable energy consumption. In this article, the specific energy consumption of vacuum filtration and air flow rates of a pilot-scale horizontal vacuum belt filter unit are investigated. The results show that a claw-type vacuum pump consumes only half the energy compared to a conventional liquid ring vacuum pump at corresponding operating points. A comparison between the specific energy consumption of vacuum filtration and thermal drying of the filter cake to zero moisture revealed that vacuum filtration accounted for less than half of the total energy consumption in the applied experimental conditions at Δp = 0.2–0.5 bar. The majority of the total pumping requirement of the pilot-scale filter resulted from leaks, and only 2–25% of the air flow found its way through the cake and the filter medium. The results suggest that there is a combination of the pressure difference level and the mass of solids deposited per filtration area that together with thermal drying consumes the least amount of energy per solids mass.

Acknowledgments

The authors would like to thank Hanna Niemelä for providing language help.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The Finnish Funding Agency for Technology and Innovation (Tekes) for providing funding for the study.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.