Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 15
69
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Internal stress development within wood during drying: A master curve concept and its application on drying stress evaluation

, , , &
Pages 2516-2532 | Received 24 May 2023, Accepted 12 Sep 2023, Published online: 25 Sep 2023
 

Abstract

The generation of internal stress (IS) in flat-sawn and quarter-sawn rubberwood boards during drying has been investigated using an online restoring force (RF) technique, which restrained a half-split rectangular wood specimen. Particular attention was given to the longest IS reversal regime. The IS development proceeds faster in the flat-sawn specimens than that in the quarter-sawn specimens while the maximum IS magnitudes in both specimens are rather similar. By normalizing the IS reversal period, a master IS profile, the derivative of the measured RF to the IS reversal time ratio versus the IS reversal time ratio, is proposed. This master curve, exhibiting some degree of independence from wood orientation and drying temperature, shows variations correlated with the free water content in the wet zone and the dry/wet zone fractions. The process of IS reversal, unaffected by temporary unrestraint, advances as the dry zone expands inwards and ends when the wet zone disappears. Assuming mechanical equilibrium between the dry and wet zones, the IS in both zones can be estimated from the RF data. The maximum tensile IS in the dry zone, indicating a risk of surface checks, evolves at slightly lower magnitudes at higher drying temperatures and is lower in the quarter-sawn specimens. The IS relaxation in the dry zone, still largely taking place in the absence of the applied RF, highlights the main contribution of the dry/wet zone fractions, continuing to proceed without restraining, to the IS development. These findings, emphasizing the significance of dry and wet zones, should pave the way for a better understanding of the IS development within wood during drying.

Disclosure statement

The authors declare that they have no conflict of interest.

Additional information

Funding

This work was funded by the Thailand Science Research and Innovation and Walailak University (Grant No. RSA6180077).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.