773
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

A review on biomass-derived levulinic acid for application in drug synthesis

, , ORCID Icon, , &
Pages 220-253 | Received 19 Jul 2020, Accepted 20 May 2021, Published online: 11 Jul 2021
 

Abstract

Levulinic acid (LEV) has been identified as a key building block chemical produced entirely from biomass. Its derivatives can be used to synthesize a variety of value-added chemicals, such as 2-butanone, 2-methyltetrahydrofuran, and so on. LEV has carbonyl and carboxyl functional groups, which makes it flexible, diverse, and unique during drug synthesis. It also reduces the cost of drug synthesis and makes the reaction cleaner and, not the least, has untapped potential in the field of medicine. This article reviews the application of LEV in cancer treatment, medical materials, and other medical fields. Overall, LEV can be used in the following ways: (1) Used as a raw material to directly synthesize drugs; (2) Used to synthesize related derivatives, which can be more specifically used in drug synthesis, and derivatives can achieve the corresponding release of drugs, such as paclitaxel (PTX)- LEV, polymer-betulinic acid (BA)-LEV after amidation; (3) It can modify chemical reagents or act as linkers to connect pharmaceutical reagents with carriers to form pharmaceutical intermediates, a pharmaceutical intermediate skeleton, and so on. (4) It can acylate and esterify to form: acetylpropionate and levulinyl, the indole, pyridazine, and other medicinally active functional groups can be synthesized by a long chain, which can reduce the cost of drug synthesis and simplify the tedious synthesis steps. (5) To form the protective group of levulinic acid, the hydroxyl or carboxyl position is first protected, and then the protective group is removed after the corresponding reaction, in order to participate in drug synthesis.

Disclosure statement

The authors declare no competing interests.

Additional information

Funding

This work was supported financially by the National Key R&D Program of China [2018YFB1501500], National Natural Science Foundation of China [51976225], DNL Cooperation Fund, and CAS [DNL201916].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 751.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.