491
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Peculiarities of Copper Binding to α-Synuclein

, , &
Pages 825-842 | Received 20 Jul 2011, Published online: 11 Jul 2012
 

Abstract

Heavy metals have been implicated as the causative agents for the pathogenesis of the most prevalent neurodegenerative disease. Various mechanisms have been proposed to explain the toxic effects of metals ranging from metal-induced oxidation of protein to metal-induced changes in the protein conformation. Aggregation of α-synuclein is implicated in Parkinson's disease (PD), and various metals, including copper, constitute a prominent group of α-synuclein aggregation enhancers. In this study, we have systematically characterized the α-synuclein-Cu2+ binding sites and analyzed the possible role of metal binding in α-synuclein fibrillation using a set of biophysical techniques, such as electron paramagnetic resonance (EPR), electron spin-echo envelope modulation (ESEEM), circular dichroism (CD), and size exclusion chromatography (SEC). Our analyses indicated that α-synuclein possesses at least two binding sites for Cu2+. We have been able to locate one of the binding sites in the N-terminal region. Furthermore, based on the EPR studies of model peptides and β-synuclein, we concluded that the suspected His residue did not appear to participate in strong Cu2+ binding.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.