49
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Influence of Drug Binding on DNA Flexibility: A Normal Mode Analysis

&
Pages 691-701 | Received 13 Mar 1997, Published online: 21 May 2012
 

Abstract

DNA-drug complexes are important because of their pharmacological interest but, in addition, they provide a useful model to study the essential aspects of DNA recognition processes. In order to investigate the influence of ligand binding on the dynamic properties of DNA we have carried out normal mode analysis for complexes with drugs of two types: a typical intercalator, 9-aminoacridine, and a typical groove binder, netropsin. Normal modes are analysed in terms of helicoidal parameter variations with special attention being paid to global deformations of the double helix. The results show that the influence of these two drugs is very different. Intercalation of 9-aminoacridine leads to an increase in the flexibility of the intercalated dinucleotide step, with notably larger vibrational amplitudes for both roll and twist parameters compared to free DNA. In contrast, the groove binding of netropsin induces a stiffening of the DNA segment which is in contact with the drug reflected by decreased vibrational amplitudes for backbone angles and inter base pair helicoidal parameters and an increase in vibrations for adjacent base pairs in terms of buckle and propeller twist.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.