46
Views
9
CrossRef citations to date
0
Altmetric
A Hypothesis

Signal Transduction within G-protein Coupled Receptors via an Ion Tunnel: A Hypothesis

&
Pages 631-637 | Received 14 Oct 1997, Published online: 21 May 2012
 

Abstract

Based on molecular modeling of the complexes between the μ-opioid receptor and its ligands, we present a hypothesis that accounts for several of the experimental data including the importance of conserved polar residues in rhodopsin-like G-protein-coupled receptors and the effect of Na+ on the binding of ligands to these receptors. We propose that agonists, but not antagonists, would displace Na+ from its initial binding site at the conserved D2.50 residue in the second transmembrane α-helical segment, H2. The displaced Na+ would pass through a “gate” of conserved hydrophobic residues and move along a tunnel-like interface (formed of H2, H3 and H7) enriched with several conserved hydrophilic residues including D3.49. Interaction of Na+ with D3.49 would result in the breaking of a salt-bridge between D3.49 and the conserved R3.50 residue thus exposing the latter for interaction with the G-protein.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.