31
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

TIT for TAT: The Properties of Inosine and Adenosine in TATA Box DNA

, &
Pages 787-810 | Received 15 Oct 1998, Published online: 21 May 2012
 

Abstract

The sequence dependent conformation, flexibility and hydration properties of DNA molecules constitute selectivity determinants in the formation of protein-DNA complexes. TATA boxes in which AT basepairs (bp) have been substituted by IC bp (TITI box) allow for probing these selectivity determinants for the complexation with the TATA box-binding protein (TBP) with different sequences but identical chemical surfaces. The reference promoter Adenovirus 2 Major Late Promoter (mlp) is formed by the apposition of two sequences with very different dynamic properties: an alternating TATA sequence and an A-tract. For a comparative study, we carried out molecular dynamics simulations of two DNA oligomers, one containing the mlp sequence (2 ns), and the other an analog where AT basepairs were substituted by IC basepairs (1 ns). The simulations, carried out with explicit solvent and counteri-ons, yield straight purine tracts, the A-tract being stiffer than the I-tract, an alternating structure for the YRYR tracts, and hydration patterns that differ between the purine tracts and the alternating sequence tracts. A detailed analysis of the proposed interactions responsible for the stiffness of the purine tracts indicates that the stacking between the bases bears the strongest correlation to stiffness. The hydration properties of the minor groove in the two oligomers are distinctly different. Such differences are likely to be responsible for the stronger binding of TBP to mlp over the inosine-substituted variant. The calculations were made possible by the development, described here, of a new set of forcefield parameters for inosine that complement the published CHARMM all-hydrogen nucleic acid parametrization.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.