26
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

The Enzyme Activity Allosteric Regulation Model Based on the Composite Nature of Catalytic and Regulatory Sites Concept

, &
Pages 917-929 | Received 27 Nov 1998, Published online: 21 May 2012
 

Abstract

A new kinetic model of enzymatic catalysis is proposed, which postulates that enzyme solutions are equilibrium systems of oligomers differing in the number of subunits and in the mode of their assembly. It is suggested that the catalytic and regulatory sites of allosteric enzymes are of composite nature and appear as a result of subunits joining. Two possible joining modes are postulated at each oligomerization step. Catalytic site may arise on oligomer formed only by one of these modes. Effector acts by fastening together components of certain oligomeric form and increases the life time of this form. It leads to a shift of oligomer equilibrium and increases a proportion of effector-binding oligomers. Effectors-activators bind the oligomers carrying composite catalytic sites and effectors-inhibitors bind the oligomers, which do not carry active catalytic sites. Thus, catalytic activity control in such system is explained by effector-induced changes of a catalytic sites number, but not of a catalytic site activity caused by changes of subunit's tertiary structure.

The postulates of the model do not contradict available experimental data and lead to a new type of general rate equation, which allows to describe and understand the specific kinetic behavior of allosteric enzymes as well as Michaelis type enzymes. All known rate equations of allosteric

The equation was tested by modeling the kinetics of human erythrocyte phosphofructokinase. It enabled to reproduce quantitatively the 66 kinetic curves experimentally obtained for this enzyme under different reaction conditions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.