14
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Monoclonal Antibody Against DNA Adducts with Osmium Structural Probes

, , , , &
Pages 41-50 | Received 05 Mar 1999, Published online: 21 May 2012
 

Abstract

Osmium tetroxide complexes with nitrogen ligands (Os,L) have been widely used as probes of the DNA structure. A monoclonal antibody OsBP7H8 against DNA adducts with Os,L was produced in mice. OsBP7H8 does not bind to proteins or total yeast RNA modified with Os,2,2′-bipyridine (bipy) nor to the unmodified nucleic acids and proteins. The antibody recognizes DNA modified with Os,bipy (DNA-Os,bipy) or with OsO4,1,10-phenanthroline (DNA-Os,phen) but it does not cross-react with oxidized DNA and with DNA adducts of osmium tetroxide complexes with other ligands (such as pyridine, TEMED and bathophenan-throline disulfonic acid). The affinity of OsBP7H8 to DNA-Os,phen is about five-fold higher as compared to DNA-Os,bipy. The antibody can be thus applied either for recognition of single-stranded and distorted regions in DNA (after DNA modification with Os,bipy) or for detection of both single-stranded and double-stranded DNAs (after DNA modification with Os,phen). A new simplified procedure for the dot-blot analysis is proposed, not requiring the purification of DNA-osmium adduct prior to its application to the membrane.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.