68
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Thermodynamic Analysis of Stacking Hybridization of Oligonucleotides with DNA Template

, , , , , & show all
Pages 555-570 | Received 23 Jun 2001, Published online: 15 May 2012
 

Abstract

Contiguous stacking hybridization of oligodeoxyribonucleotides with DNA as template was investigated using three types of complexes: oligonucleotide contiguously stacked with the stem of the preformed minihairpin (complexes I), oligonucleotide tandems containing two (complexes II) or three (complexes III) short oligomers with a common DNA template. Enthalpy ΔH° and entropy ΔS° of the coaxial stacking of adjacent duplexes were determined for GC/G*pC, GT/A*pC, AC/G*pT, AT/A*pT, CT/A*pG, AG/C*pT, AA/T*pT and TT/A*pA nicked (*) dinucleotide base pairs. The maximal efficiency of co-operative interaction was found for the GC/G*pC interface (ΔG°NN/N*pN=-2.7 kcal/mol) and the minimal one for the AA/T*pT interface (ΔG°/NN/N*pN=-1.2 kcal/mol) at 37 °C. As a whole, the efficiency of the base pairs interaction ΔG°NN/N*pN in the nick is not lower than that within the intact DNA helix ΔG°NN/NN). These observed the ΔG°NN/N*pN values are proposed may include the effect of the partial removal of fraying at the adjacent helix ends additionally to the effect of the direct stacking of the terminal base pairs in the duplex junction (ΔG°NN/NN. The thermodynamic parameters have been found to describe adequately the formation of all tandem complexes of the II and III types with oligonucleotides of various length and hybridization properties. The performed thermodynamic analysis reveals features of stacking oligonucleotide hybridization which allow one to predict the temperature dependence of association of oligonucleotides and the DNA template within tandem complexes as well as to determine optimal concentration for formation of these complexes characterized by high co-operativity level.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.