28
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

A Genetic Algorithm with Conformational Memories for Structure Prediction of Polypeptides

&
Pages 65-87 | Received 12 Mar 2003, Published online: 15 May 2012
 

Abstract

We have developed an iterative hybrid algorithm (HA) to predict the 3D structure of peptides starting from their amino acid sequence. The HA is made of a modified genetic algorithm (GA) coupled to a local optimizer. Each HA iteration is carried out in two phases. In the first phase several GA runs are performed upon the entire peptide conformational space. In the second phase we used the manifestation of what we have called conformational memories, that arises at the end of the first phase, as a way of reducing the peptide conformational space in subsequent HA iterations. Use of conformational memories speeds up and refines the localization of the structure at the putative Global Energy Minimum (GEM) since conformational barriers are avoided. The algorithm has been used to predict successfully the putative GEM for Met- and Leu-enkephalin, and to obtain useful information regarding the 3D structure for the 8mer of polyglycine and the 16 residue (AAQAA)3Y peptide. The number of fitness function evaluations needed to locate the putative GEMs are fewer than those reported for other heuristic methods. This study opens the possibility of using Genetic Algorithms in high level predictions of secondary structure of polypeptides.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.