9
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

3D Structure Model of the Principal Neutralizing Epitope of Minnesota HIV-1 Isolate

&
Pages 577-590 | Received 07 Oct 2003, Published online: 15 May 2012
 

Abstract

A hierarchical procedure, using a “bottom-up” strategy and combining (i) a probabilistic approach for estimating all possible starting structures, (ii) restrained molecular mechanics algorithms for preliminary selection of all energetically preferred conformers, as well as (iii) quantum chemical computations for refining their geometry, was used to study the structural properties of the HIV-MN neutralizing epitope in terms of NMR spectroscopy data. As a result, only one of initial structures matching the experimental and theoretical data was found to be well-ground for implementing the function of immunoreactive conformation of the virus immunogenic crown. The geometric parameters of this structure in water solution were shown to correspond to a double β-turn conformation similar to that revealed in crystal for synthetic molecules imitating the central region of the HIV-MN V3 loop. The following conclusion was drawn from the comparative analysis of simulated structure with the one computed previously: the HIV-MN immunogenic tip has some inherent conformational flexibility that manifests at the alterations of hexapeptide environment and leads to the structural transitions changing the local conformation of the stretch of interest but retaining its spatial main chain fold. As a matter of record, the high resolution 3D structure model for the HIV-MN principal neutralization site was constructed, and its geometric parameters were compared with the corresponding characteristics of conformers derived earlier for describing the conformational features of immunogenic tip of gp120 from Thailand HIV-1 isolate.

The results are discussed in the light of literature data on HIV-1 neutralizing epitope structure.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.