10
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Dual Spatial Folds and Different Local Structures of the HIV-1 Immunogenic Crown in Various Virus Isolates

Pages 159-170 | Received 25 May 2004, Published online: 15 May 2012
 

Abstract

Local and global structural properties of the HIV-1 principal neutralizing epitope were studied in terms of NMR spectroscopy data reported in literature for the HIV-Haiti and HIV-RF isolates. To this effect, the NMR-based method comprising a probabilistic model of protein conformation in conjunction with the molecular mechanics and quantum chemical computations was used for determining the ensembles of conformers matching the NMR requirements and energy criteria. As a matter of record, the high resolution 3D structure models were constructed for the HIV-Haiti and HIV-RF immuno- genic crowns, and their geometric parameters were collated with the ones of conformers derived previously for describing the conformational features of immunogenic tip of gp120 from Thailand and MN HIV-1 strains. The HIV-1 neutralization site was demonstrated to constitute in water solution highly flexible system sensitive to its environment. This inference is completely valid for the geometric space of dihedral angles where statistically significant differences in local structures of simulated conformers have been found for all virus isolates of interest. In spite of this fact, the stretch analyzed was shown to manifest a certain conservatism in the space of atomic coordinates, building up in four HIV-1 isolates two spatial folds similar to those observed in crystal for the V3 loop peptides bound to different neutralizing Fabs.

The results are discussed in the light of literature data on HIV-1 neutralizing epitope structure.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.