225
Views
14
CrossRef citations to date
0
Altmetric
Articles

Efficient estimation of MMGBSA-based BEs for DNA and aromatic furan amidino derivatives

&
Pages 522-537 | Received 29 Mar 2012, Accepted 17 May 2012, Published online: 09 Aug 2012
 

Abstract

Molecular mechanics with Generalized Born surface area (MMGBSA) based binding energies (BEs) derived from the molecular dynamics (MD) trajectories are highly reliable and extensively used standards to estimate the strength of interactions between ligands and their receptor. MD simulations (5 ns) for 30 aromatic furan aminidino derivatives (anti-Pneumocystis carnii agents) have been carried out by using Amber program and BEs have been calculated by using Generalized Born (GB) method. Based on the generated data, we present a simple and effective method for the approximation of BEs without performing MD simulations and MMGBSA calculations. Quantum chemical (density functional theory based) and geometrical descriptors are used for the prediction of the BE values. All the developed models are statistically significant with high values of correlation and cross-validation coefficients. The prediction ability and effectiveness of the models are tested by the division of the data-set into four different training and test sets and the average error was only 4–7% (1.56–2.61 kcal/mol) of the actual BEs.

Acknowledgments

HKS and GNS thank the Department of Science and Technology (DST), New Delhi for the financial assistance through Fast-Track (SR/FT/CS-031/2009) and Swarnajayanti projects respectively.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.