237
Views
35
CrossRef citations to date
0
Altmetric
Articles

Assessing induced folding within the intrinsically disordered C-terminal domain of the Henipavirus nucleoproteins by site-directed spin labeling EPR spectroscopy

, , , , , & show all
Pages 453-471 | Received 17 Apr 2012, Accepted 25 May 2012, Published online: 13 Aug 2012
 

Abstract

This work aims at characterizing structural transitions within the intrinsically disordered C-terminal domain of the nucleoprotein (NTAIL) from the Nipah and Hendra viruses, two recently emerged pathogens gathered within the Henipavirus genus. To this end, we used site-directed spin labeling combined with electron paramagnetic resonance spectroscopy to investigate the α-helical-induced folding that Henipavirus NTAIL domains undergo in the presence of the C-terminal X domain of the phosphoprotein (PXD). For each NTAIL protein, six positions located within four previously proposed molecular recognition elements (MoREs) were targeted for spin labeling, with three of these positions (475, 481, and 487) falling within the MoRE responsible for binding to PXD (Box3). A detailed analysis of the impact of the partner protein on the labeled NTAIL variants revealed a dramatic modification in the environment of the spin labels grafted within Box3, with the observed modifications supporting the formation of an induced α-helix within this region. In the free state, the slightly lower mobility of the spin labels grafted within Box3 as compared to the other positions suggests the existence of a transiently populated α-helix, as already reported for measles virus (MeV) NTAIL. Comparison with the well-characterized MeV NTAIL–PXD system, allowed us to validate the structural models of Henipavirus NTAIL–PXD complexes that we previously proposed. In addition, this study highlighted a few notable differences between the Nipah and Hendra viruses. In particular, the observation of composite spectra for the free form of the Nipah virus NTAIL variants spin labeled in Box3 supports conformational heterogeneity of this partly pre-configured α-helix, with the pre-existence of stable α-helical segments. Altogether these results provide insights into the molecular mechanisms of the Henipavirus NTAIL–PXD binding reaction.

Acknowledgments

We wish to thank Nicolas Armstrong and the mass spectrometry platform of the IFR48 of Marseille for mass spectrometry analyses, and David Blocquel (AFMB) for help with the SEC-MALLS analyses of the synthetic NiV PXD sample. We also thank Jean-Pierre Andrieu (Laboratoire d’Enzymologie Moléculaire, Institut de Biologie Structurale, Grenoble, France) and the proteomic platform of the IBS for the amino acid compositions analyses. The authors are also grateful to the EPR facilities of the national TGE RPE and Aix-Marseille University EPR platform, and to Janez Strancar (Jozef Stefan Institut, Ljubljana, Slovenia) for providing access to the EPRSIM-C software.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.