366
Views
3
CrossRef citations to date
0
Altmetric
Articles

Structural insight into the binding complex: β-arrestin/CCR5 complex

, , , , &
Pages 866-875 | Received 26 Mar 2013, Accepted 06 Apr 2013, Published online: 19 Jun 2013
 

Abstract

The chemokine receptor 5 (CCR5) belongs to the superfamily of serpentine G protein-coupled receptors (GPCRs). The DRY motif (Asp, Arg, Tyr) of the intracellular loop 2 (ICL2), which is highly conserved in the GPCRs has been shown to be essential for the stability of folding of CCR5 and the interaction with β-arrestin. But the molecular mechanism by which it recognizes and interacts with β-arrestin has not been elucidated. In the present study, we described the active state of the β-arrestin structure using normal mode analysis and characterized the binding cleft of CCR5-ICL2 with β-arrestin using SABRE© docking tool and molecular dynamics simulation. Based on our computational results, we proposed a mode of binding between the ICL2 loop of CCR5 and β-arrestin structure, and modeled the energetically stable β-arrestin/CCR5 complex. In view of CCR5’s importance as a therapeutic target for the treatment of HIV, this observation provides novel insight into the β-arrestin/CCR5 pathway. As a result, the current computational study of the detailed β-arrestin/CCR5 binding complex could provide the rationale for the development of next generation of HIV peptide inhibitors as therapeutic agents.

Acknowledgment

The authors acknowledge Dr. Adel Hamza for his help and discussion on the docking approach using Sabre software.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.