157
Views
18
CrossRef citations to date
0
Altmetric
Articles

Complexes assembled from TMV-derived spherical particles and entire virions of heterogeneous nature

, , , , &
Pages 1193-1201 | Received 01 May 2013, Accepted 15 Jun 2013, Published online: 07 Oct 2013
 

Abstract

Previously, we described some structural features of spherical particles (SPs) generated by thermal remodelling of the tobacco mosaic virus. The SPs represent a universal platform that could bind various proteins. Here, we report that entire isometric virions of heterogeneous nature bind non-specifically to the SPs. Formaldehyde (FA) was used for covalent binding of a virus to the SPs surface for stabilizing the SP—virus complexes. Transmission and high resolution scanning electron microscopy showed that the SPs surface was covered with virus particles. The architecture of SP–virion complexes was examined by immunologic methods. Mean diameters of SPs and SP–human enterovirus C and SP–cauliflower mosaic virus (CaMV) compositions were determined by nanoparticle tracking analysis (NTA) in liquid. Significantly, neither free SPs nor individual virions were detected by NTA in either FA-crosslinked or FA-untreated compositions. Entirely, all virions were bound to the SPs surface and the SP sites within the SP–CaMV complexes were inaccessible for anti-SP antibodies. Likewise, the SPs immunogenicity within the FA-treated SPs–CaMV compositions was negligible. Apparently, the SP antigenic sites were hidden and masked by virions within the compositions. Previously, we reported that the SPs exhibited adjuvant activity when foreign proteins/epitopes were mixed with or crosslinked to SPs. We found that immunogenicity of entire CaMV crosslinked to SP was rather low which could be due to the above-mentioned masking of the SPs booster. Contrastingly, immunogenicity of the FA-untreated compositions increased significantly, presumably, due to partial release of virions and unmasking of some SPs-buster sites after animals immunization.

Acknowledgements

We thank Mr Viktor Sidorenko for help in the scanning electron microscopy experiments. This work was supported in part by Federal Program “Scientific and scientific-educational personnel of innovative Russia” (agreement no. 8564), the Russian Foundation for Basic Research (Grant No. 13-04-00543-a), research grant No. 11.519.11.2010 from the Russian Ministry of Education and Science and M.V. Lomonosov Moscow State University Program of Development.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.