328
Views
41
CrossRef citations to date
0
Altmetric
Articles

Conformational stability of OXA-51 β-lactamase explains its role in carbapenem resistance of Acinetobacter baumannii

&
Pages 1406-1420 | Received 24 Apr 2013, Accepted 23 Jun 2013, Published online: 24 Jul 2013
 

Abstract

Acinetobacter baumannii, an important nosocomial pathogen, is increasingly becoming resistant to antibiotics including recent β-lactam like imipenem. Production of different types of β-lactamases is one of the major resistance mechanisms which bacteria adapt. We recently reported the presence of a β-lactamase, OXA-51, in clinical strains of A. baumannii in ICUs of our hospital. This study is an attempt to understand the structure–function relationship of purified OXA-51 in carbapenem resistance in A. baumannii. The OXA-51 was cloned, expressed in E. coli Bl-21(DE3) and further purified. The in vitro enzyme activity of purified OXA-51 was confirmed by two independent techniques; in-gel assay and spectrophotometric method using nitrocefin. Further in vivo effect of OXA-51 was followed by transmission electron microscopy of bacterium. Biophysical and biochemical investigations of OXA-51 were done using LC-MS/MS, UV–Vis absorption, fluorescence, circular dichroic spectroscopy and isothermal calorimetry. Native OXA-51 was characterized as 30.6 kDa, pI 8.43 with no disulphide bonds and comprising of 30% α-helix, 27% β-sheet. Secondary structure of OXA-51 was significantly unchanged in broad pH (4–10) and temperature (30–60 °C) range with only local alterations at tertiary structural level. Interestingly, enzymatic activity up to 75% was retained under above conditions. Hydrolysis of imipenem by OXA-51 (km,1 μM) was found to be thermodynamically favourable. In the presence of imipenem, morphology of sensitive strain of A. baumannii was drastically changed, while OXA-51-transformed sensitive strain retained the stable coccobacillus shape, which demonstrates that imipenem is able to kill sensitive strain but is unable to do so in OXA-51-transformed strain. Hence the production of pH- and temperature-stable OXA-51 appears to be a major determinant in the resistance mechanisms adopted by A. baumannii in order to evade even the latest β-lactams, imipenem. It can be concluded from the study that OXA-51 plays a vital role in the survival of the pathogen under stress conditions and thus poses a major threat.

Acknowledgements

Mr. Vishvanath Tiwari wishes to thank the Council of Scientific and Industrial Research, India, for providing fellowship (09/006(0361)/2006-EMR-1).This work was funded by Indian Council of Medical Research, New Delhi (ICMR-5/3/3/18/2009-ECD-I). We sincerely thank Prof. Arti Kapil Microbiology Department, A.I.I.M.S. for providing the clinical strain of A. baumannii.

Notes

The supplementary material for this paper is available online at http://dx.doi.10.1080/07391102.2013.819789.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.