282
Views
17
CrossRef citations to date
0
Altmetric
Articles

Polymer–cobalt(III) complexes: structural analysis of metal chelates on DNA interaction and comparative cytotoxic activity

, , &
Pages 1876-1888 | Received 10 Jun 2013, Accepted 15 Aug 2013, Published online: 20 Sep 2013
 

Abstract

A new series of pendant-type polymer-cobalt(III) complexes, [Co(LL)2(BPEI)Cl]2+, (where BPEI = branched polyethyleneimine, LL = dipyrido[3,2-a:2′,3′-c](6,7,8,9-tetrahydro)phenazine (dpqc), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq) and imidazo[4,5-f]1,10-phenanthroline (ip)) each with three different degrees of coordination have been synthesized and characterized. Studies to know the mode and strength of interaction between these polymer–metal complexes and calf thymus DNA have been performed by UV–Visible absorption and emission techniques. Among these series, each polymer metal complex having higher binding strength with DNA has been selected to test against human cancer/normal cell lines. On the basis of these spectral studies, it is proposed that our polymer–metal complexes bind with DNA mainly through intercalation along with some electrostatic binding. The order of binding strength for the complexes with ligand, dpqc > dpq > ip. The analysis of the results suggests that polymer–cobalt(III) complexes with higher degree of coordination effectively binds with DNA due to the presence of large number of positively charged cobalt(III) chelates in the polymer chain which cooperatively act to increase the overall binding strength. These polymer–cobalt(III) complexes with hydrophobic ligands around the cobalt(III) metal centre favour the base stacking interactions via intercalation. All the complexes show very good anticancer activities and increasing of binding strength results in higher inhibition value. The polymer–cobalt(III) complex with dpqc ligand possess two fold increased anticancer activity when compared to complexes with other ligands against MCF-7 cells. Besides, the complexes were insensitive towards the growth of normal cells (HEK-293) at the IC50 concentration.

Acknowledgements

We are grateful to the UGC-SAP & COSIST and DST-FIST programmes of the Department of Chemistry, Bharathidasan University.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.