154
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

The full electron structure of the FKBP12/FK506 complex

, , &
Pages 388-394 | Received 17 Nov 2013, Accepted 02 Jan 2014, Published online: 28 Jan 2014
 

Abstract

We present a study of FKBP12/FK506 using an electron structure calculation. These calculations employ a novel technique called eCADD on the protein’s full electron structure along with its hydrophobic pocket and the frontier-orbital-perturbation theory. We first obtain the energy bands and orbital coefficients of protein FKBP12. On this basis, we found that the activity atoms and activity residues of FKBP12 were in good agreement with X-ray crystallography experiments. The results indicate that the interactions occur only between the LUMOs of FKBP12 and the HOMO of FK506, not between the HOMOs of FKBP12 and the LUMO of FK506. In other words, the activity sites of protein FKBP12 are located on its LUMOs, not HOMOs. The electron structures of FKBP12/FK506 give us a clearer understanding of their interaction mechanism and will help us design new ligands of FKBP12.

Acknowledgement

The authors thank Professor Yuanjie Ye for his kind help, Dr Kaillathe Padmanadhan, Department of Biochemistry, Michigan State University, for providing the SGI machine and the Department of Computer Science at Oakland University for providing the Linux cluster.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.