362
Views
5
CrossRef citations to date
0
Altmetric
Articles

Structural insight into the binding interactions of modeled structure of Arabidopsis thaliana urease with urea: an in silico study

, &
Pages 845-851 | Received 04 Nov 2013, Accepted 12 Apr 2014, Published online: 15 May 2014
 

Abstract

Urease (EC 3.5.1.5., urea amidohydrolase) catalyzes the hydrolysis of urea to ammonia and carbon dioxide. Urease is present to a greater abundance in plants and plays significant role related to nitrogen recycling from urea. But little is known about the structure and function of the urease derived from the Arabidopsis thaliana, the model system of choice for research in plant biology. In this study, a three-dimensional structural model of A. thaliana urease was constructed using computer-aided molecular modeling technique. The characteristic structural features of the modeled structure were then studied using atomistic molecular dynamics simulation. It was observed that the modeled structure was stable and regions between residues index (50–80, 500–700) to be significantly flexible. From the docking studies, we detected the possible binding interactions of modeled urease with urea. Ala399, Ile675, Thr398, and Thr679 residues of A. thaliana urease were observed to be significantly involved in binding with the substrate urea. We also compared the docking studies of ureases from other sources such as Canavalia ensiformis, Helicobacter pylori, and Bacillus pasteurii. In addition, we carried out mutation analysis to find the highly mutable amino acid residues of modeled A. thaliana urease. In this particular study, we observed Met485, Tyr510, Ser786, Val426, and Lys765 to be highly mutable amino acids. These results are significant for the mutagenesis analysis. As a whole, this study expounds the salient structural features as well the binding interactions of the modeled structure of A. thaliana urease.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.