279
Views
15
CrossRef citations to date
0
Altmetric
Articles

Cell communication using intrinsically disordered proteins: what can syndecans say?

&
Pages 1037-1050 | Received 14 Feb 2014, Accepted 16 May 2014, Published online: 23 Jun 2014
 

Abstract

Because intrinsically disordered proteins are incapable of forming unique tertiary structures in isolation, their interaction with partner structures enables them to play important roles in many different biological functions. Therefore, such proteins are usually multifunctional, and their ability to perform their major function, as well as accessory functions, depends on the characteristics of a given interaction. The present paper demonstrates, using predictions from two programs, that the transmembrane proteoglycans syndecans are natively disordered because of their diverse functions and large number of interaction partners. Syndecans perform multiple functions during development, damage repair, tumor growth, angiogenesis, and neurogenesis. By mediating the binding of a large number of extracellular ligands to their receptors, these proteoglycans trigger a cascade of reactions that subsequently regulate various cell processes: cytoskeleton formation, proliferation, differentiation, adhesion, and migration. The occurrences of 20 amino acids in syndecans 1–4 from 25 animals were compared with those in 17 animal proteomes. Gly + Ala, Thr, Glu, and Pro were observed to predominate in the syndecans, contributing to the lack of an ordered structure. In contrast, there were many fewer amino acids in syndecans that promote an ordered structure, such as Cys, Trp, Asn, and His. In addition, a region rich in Asp has been identified between two heparan sulfate-binding sites in the ectodomains, and a region rich in Lys has been identified in the conserved C1 site of the cytoplasmic domain. These particular regions play an essential role in the various functions of syndecans due to their lack of structure.

Acknowledgment

We are grateful to D. Reifsnyder Hickey for assistance in preparation of the paper.

Funding

The present work was performed under the financial support of the Russian Science Foundation [grant number 14-14-00536].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.