136
Views
1
CrossRef citations to date
0
Altmetric
Articles

Kinetic characterization of Ca2+-ATPase (SERCA1) inhibition by tri-n-butyltin(IV) chloride. A docking conformation proposal

, , &
Pages 1211-1224 | Received 26 May 2014, Accepted 25 Jun 2014, Published online: 31 Jul 2014
 

Abstract

Organotin compounds, such as tri-n-butyltin(IV) chloride (TBT), are widespread toxicants which disrupt different functions in living organisms. TBT interacts with lipid membranes and membrane proteins. The inhibition of the calcium ATPase from sarcoplasmic reticulum membranes by TBT was studied. It was found that the ATPase inhibition could not be reverted in a large time scale; moreover, an excess of TBT over enzyme did not fully inhibit the ATPase activity; therefore, it was concluded that TBT irreversibly inhibits the enzyme, and this inhibition is accompanied by a decrease in the effective TBT concentration. The residual ATP hydrolysis activity was measured at different TBT concentrations with time, and the protective effect of different calcium concentrations on the TBT inhibition was also determined. The simplest kinetic mechanism to successfully explain all the observations and the kinetic behavior was found to be a single irreversible step of the inhibitor binding to the enzyme accompanied with a first-order inhibitor inactivation. A fluorescence study of fluorescein-5-isothiocyanate-labeled enzyme revealed that TBT binding to the enzyme entails a conformational change related to the high- to low-affinity calcium-binding state transition (E1 to E2 transition), resembling the conformational change induced by vanadate linked to the formation of E2 V complex from E1 state. A docking study allowed us to propose a binding pocket for TBT in the membrane region of E1 close to the high-affinity calcium-binding sites, as well as to define the interactions with amino acid residues interfering with calcium sites occupancy.

Acknowledgments

The authors greatly appreciate Prof. Francisco García Cánovas for his advice and helpful discussion and comments.

Additional information

Funding

Funding. This work was supported by the Spanish Ministry of Science and Innovation (MCINN) under Grant number CTQ2007-66,244.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.