543
Views
40
CrossRef citations to date
0
Altmetric
Articles

Molecular dynamics simulation studies of GSK-3β ATP competitive inhibitors: understanding the factors contributing to selectivity

, , &
Pages 2578-2593 | Received 04 May 2015, Accepted 15 Jun 2015, Published online: 27 Nov 2015
 

Abstract

Glycogen synthase kinase-3 is a constitutively acting, multifunctional serine threonine kinase, the role of which has been implicated in several physiological pathways and has emerged as a promising target for the treatment of type-II diabetes and Alzheimer’s disease. In order to provide a detailed understanding of the origin of selectivity determinants of ATP competitive inhibitors, molecular dynamics simulations in combination with MM-PBSA binding energy calculations were performed using crystal structures of GSK-3β and CDK-2 in complex with 12 ATP competitive inhibitors. Analysis of energy contributions indicate that electrostatic interaction energy dictates the selectivity of ATP competitive inhibitors against CDK-2. Key interactions as well as residues that potentially make a major contribution to the binding free energy were identified at the ATP binding site. This analysis stresses the need for the inhibitors to interact with Lys85, Thr138, and Arg141 in the binding site of GSK-3β to show selectivity. The residue-wise energy decomposition analysis further suggested the additional role of Gln185 in determining the selectivity of maleimides. The results obtained in this study can be utilized to design new selective GSK-3 ATP competitive inhibitors.

Acknowledgment

The authors thank Department of Science and Technology (DST), Government of India, New Delhi for providing financial support.

Disclosure statement

No potential conflict of interest was reported by the authors.

Supplemental material

The supplemental material for this paper is available online at http://dx.doi.org/10.1080/07391102.2015.1063457.

Additional information

Funding

This work was supported by the Department of Science and Technology, New Delhi, Govt. of India.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.