109
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Gas-phase acidity and dynamics of the protonation processes of carbidopa and levodopa. A QM/QD study

, &
Pages 2268-2280 | Received 29 Aug 2015, Accepted 23 Oct 2015, Published online: 04 Mar 2016
 

Abstract

The present work details, our efforts to investigate and compare the acid–base properties of levodopa (LD) and carbidopa (CD), a drug combination being used in the treatment of Parkinson’s disease. Protonation and deprotonation were examined for all possible sites in the two drugs. Proton affinity and proton detachment enthalpies were computed at the B3LYP/6–311++G** level of theory. Results of the present work reveal that CD is more basic and can abstract protons in solution much more efficiently than LD. Furthermore, at all deportation sites considered, CD is more acidic than LD. DFT-based ADMP, dynamic simulations have been performed to explore the dynamics of the protonation processes in LD and CD. Thus, while the dynamics of the protonation process of LD is very straightforward leading to the formation of the corresponding cation, the protonation process in CD is very complex involving a major geometry change and rearrangement. Results of the present work reveal that the active species in acid medium is not CD in its normal geometry but a carbonyl hydrazine form instead. The presence of the carbonyl group β to the hydrazine group may very well underlie its enhanced activity which allows it to bind to the active site of the DDC enzyme. The relative stabilities of various water–water–CD complexes have been computed and compared.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.