252
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Deciphering molecular aspects of interaction between anticancer drug mitoxantrone and tRNA

, , , , &
Pages 2090-2102 | Received 20 Apr 2016, Accepted 08 Jul 2016, Published online: 09 Aug 2016
 

Abstract

Mitoxantrone (1,4-dihydroxy-5,8-bis[[2-[(2-hydroxyethyl)amino]ethyl]amino]-9,10-anthracenedione) is a synthetically designed antineoplastic agent and structurally similar to classical anthracyclines. It is widely used as a potent chemotherapeutic component against various kinds of cancer and possesses lesser cardio-toxic effects with respect to naturally occurring anthracyclines. In the present study, we have investigated the binding features of mitoxantrone–tRNA complexation at physiological pH using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, circular dichroism (CD) spectroscopy, isothermal titration calorimetry, and UV–visible absorption spectroscopic techniques. FTIR analysis reveals that mitoxantrone interacts mainly with heterocyclic base residues of tRNA along with slight external binding with phosphate–sugar backbone. In particular, mitoxantrone binds at uracil (C=O) and adenine (C=N) sites of biomolecule (tRNA). CD spectroscopic results suggest that there is no major conformational transition in native A-form of tRNA upon mitoxantrone–tRNA adductation except an intensification in the secondary structure of tRNA is evident. The association constant calculated for mitoxantrone–tRNA association is found to be 1.27 × 105 M−1 indicating moderate to strong binding affinity of drug with tRNA. Thermodynamically, mitoxantrone–tRNA interaction is an enthalpy-driven exothermic reaction. Investigation into drug–tRNA interaction can play an essential role in the rational development of RNA targeting chemotherapeutic agents, which also delineate the structural–functional relationship between drug and its target at molecular level.

Acknowledgments

The authors thank Director, CSIR-National Physical Laboratory for granting the permission for publication of the work. Bhumika Ray is thankful to Department of Science and Technology (IF150181), Government of India, New Delhi and Shweta Agarwal is thankful to Council of Scientific & Industrial Research (No. 31/001(0373)/2011-EMR-I), New Delhi for providing financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.