281
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Conformational changes associated with L16P and T118M mutations in the membrane-embedded PMP22 protein, consequential in CMT-1A

, , &
Pages 2880-2894 | Received 29 May 2016, Accepted 01 Sep 2016, Published online: 05 Oct 2016
 

Abstract

Peripheral myelin protein 22 (PMP22) resides in the plasma membrane and is required for myelin formation in the peripheral nervous system. Excess PMP22 mutants accumulate in the endoplasmic reticulum (ER) resulting in the inherited neuropathies of Charcot–Marie–Tooth disease. However, there was no evidence of the structure of PMP22 or how mutations affect its folding. Therefore, in this study, we combined bioinformatics and homology modeling approaches to obtain three-dimensional native and mutated PMP22 models and its anchoring to a POPC membrane, submitted to .5-μs MD simulations, to determine how the L16P and T118M mutations affect the conformational behavior of PMP22. In addition, we investigated the ability of the native and mutated species to accumulate in the ER, via interaction with RER1, by combining protein–protein docking and MD simulations, taking the conformations that were most representative of the native and mutated PMP22 systems and RER1 conformations. Principal component analysis over MD simulations revealed that L16P and T118M mutations resulted in increased structural instability compared to the native form, which is consistent with previous experimental findings of increased structural fluctuations along a loop connecting transmembrane α-helix1 and α-helix2. Docking and MD simulations coupled with the MMGBSA approach allowed the identification that the binding interface for the PMP22-RER1 complex takes place through transmembrane α-helix1 and α-helix2, with higher effective binding free energy values between the mutated PMP22 systems and RER1 than for the native PMP22, mainly through van der Waals interactions.

Acknowledgement

Martiniano Bello is grateful to SIP-IPN for financial support through grant SIP-20160814. Jose Correa thanks ICyTDF (PIRIVE09-9), CONACYT (CB-254600 and PDCPN-782), PIFI-SIP-COFAA/IPN, and SIP-20160204 for financial support

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.