693
Views
21
CrossRef citations to date
0
Altmetric
Research Articles

Identification of potential inhibitors for HCV NS3 genotype 4a by combining protein–ligand interaction fingerprint, 3D pharmacophore, docking, and dynamic simulation

, &
Pages 1713-1727 | Received 09 Sep 2016, Accepted 12 May 2017, Published online: 07 Jun 2017
 

Abstract

HCV NS3 protease domain has been one of the most attractive targets for developing new drugs for HCV infection and many drugs were successfully developed, but all of them were designed for targeting HCV genotype 1 infection. HCV genotype 4a dominant in Egypt has paid less attention. Here, we describe our protocol of virtual screening in identification of novel potential potent inhibitors for HCV NS3 of genotype 4a using homology modeling, PLIF (protein–ligand interaction fingerprint), docking, pharmacophore, and dynamic simulation. A high-quality 3D model of HCV NS3 protease of genotype 4a was constructed using crystal structure of HCV NS3 protease of genotype 1b (PDB ID: 4u01) as a template. PLIF was generated using five crystal structures of HCV NS3 (PDB ID: 4u01, 3kee, 4ktc, 4i33, and 5epn) which revealed the most important residues and their interactions with the co-crystalized ligands. A 3D pharmacophore model consisting of six features was developed from the generated PLIF data and then used as a screening filter for 11,244 compounds. Only 423 compounds passed the pharmacophore filter and entered the docking-based virtual screening stage. The highest ranked five hits from docking result (compound (C1–C5)) were selected for further analysis. They exhibited stronger interaction and higher binding affinity than HCV NS3 protease ligands. Dynamic simulation of the protein–best lead complex was performed to validate and augment the virtual screening results and it showed that these compounds have a strong binding affinity and could be very effective in treating HCV genotype 4a infections.

Acknowledgment

We thank the department of pharmaceutical chemistry for their support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.