299
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Identification of novel PPARα/γ dual agonists by virtual screening, ADMET prediction and molecular dynamics simulations

, , , , , , & show all
Pages 2988-3002 | Received 21 Jun 2017, Accepted 23 Aug 2017, Published online: 05 Oct 2017
 

Abstract

PPARα and PPARγ have been the most widely studied Peroxisome proliferator-activated receptor (PPAR) subtypes due to their important roles in regulating glucose, lipids, and cholesterol metabolism. By combining the lowering serum triglyceride levels benefit of PPARα agonists (such as fibrates) with the glycemic advantages of the PPARγ agonists (such as TZD), the dual PPAR agonists approach can both improve the metabolic effects and minimize the side effects caused by either agent alone, and hence, has become a promising strategy for designing effective drugs against type-2 diabetes. In this study, by means of virtual screening, ADMET prediction and molecular dynamics (MD) simulations techniques, one compound-ASN15761007 with high binding score, low toxicity were gained. It was observed by MD simulations that ASN15761007 not only possessed the same function as AZ242 did in activating PPARα and BRL did in activating PPARγ, but also had more favorable conformation for binding to the two receptors. Our results provided an approach to rapidly produce novel PPARα/γ dual agonists which might be a potential lead compound to develop against insulin resistance and hyperlipidemia.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.