415
Views
82
CrossRef citations to date
0
Altmetric
Research Article

Multi-spectroscopic and molecular modeling studies to reveal the interaction between propyl acridone and calf thymus DNA in the presence of histone H1: binary and ternary approaches

, , , ORCID Icon &
Pages 359-371 | Received 25 Jun 2017, Accepted 02 Jan 2018, Published online: 06 Feb 2018
 

Abstract

DNA is the primary target of many anticancer drugs involved in important intercellular processes, especially in transcriptional regulation, and histone is known to inhibit gene expression. Small molecules can bind to histone-DNA and impair the cell division, growth, inhibition, and apoptosis in cancer cells. In this research, the interaction of a histone H1-calf thymus DNA (ct DNA) complex and propyl acridone (PA) was investigated in Tris-HCl buffer, pH 6.8, using multi-spectroscopic, viscosity, and molecular modeling techniques. The Stern Volmer plot of the (H1-ct DNA) PA complex demonstrated two sets of binding sites with various binding affinities at three different temperatures. Thermodynamic parameters (ΔH° < 0 and ΔS° < 0) indicated that hydrogen bonds and van der Waals forces played the main roles in the binding of the drug to H1-ct DNA. The interaction between PA and ct DNA as well as (H1-ct-DNA) in the presence of acridine orange and ethidium bromide showed two different interaction behaviors in ternary systems. According to results from UV absorption spectroscopy and melting temperature (Tm) measurements, the binding mode of PA with ct DNA and the (H1-ct DNA) complex was indicative of an intercalative binding for the binary system and of both intercalative with groove binding with molecular fraction for the ternary system. Furthermore, the PA-induced detectable changes in the circular dichroism spectrum of ct DNA as well as changes in its viscosity. All of the experimental results proved that the intercalative binding between PA and ct DNA as well as the (H1-ct DNA) complex as binary and ternary systems must be predominant. The results obtained from experimental data were in good agreement with molecular modeling with regard to the determination of the binding site of PA to ct DNA in the absence and presence of histone H1.

Acknowledgments

The financial support of the Research Council of the Mashhad Branch, Islamic Azad University, is gratefully acknowledged. The authors thank Dr Ljungberg for the English editing.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.