581
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Toward novel inhibitors against KdsB: a highly specific and selective broad-spectrum bacterial enzyme

, , , &
Pages 1326-1345 | Received 30 Oct 2017, Accepted 16 Mar 2018, Published online: 18 Apr 2018
 

Abstract

KdsB (3-deoxy-manno-octulosonate cytidylyltransferase) is a highly specific and selective bacterial enzyme that catalyzes KDO (3-Deoxy-D-mano-oct-2-ulosonic acid) activation in KDO biosynthesis pathway. Failure in KDO biosynthesis causes accumulation of lipid A in the bacterial outer membrane that leads to cell growth arrest. This study reports a combinatorial approach comprising virtual screening of natural drugs library, molecular docking, computational pharmacokinetics, molecular dynamics simulation, and binding free energy calculations for the identification of potent lead compounds against the said enzyme. Virtual screening demonstrated 1460 druglike compounds in a total of 4800, while molecular docking illustrated Ser13, Arg14, and Asp236 as the anchor amino acids for recognizing and binding the inhibitors. Functional details of the enzyme in complex with the best characterized compound-226 were explored through two hundred nanoseconds of MD simulation. The ligand after initial adjustments jumps into the active cavity, followed by the deep cavity, and ultimately backward rotating movement toward the initial docked site of the pocket. During the entire simulation period, Asp236 remained in contact with the ligand and can be considered as a major catalytic residue of the enzyme. Radial distribution function confirmed that toward the end of the simulation, strengthening of ligand-receptor occurred with ligand and enzyme active residues in close proximity. Binding free energy calculations via MM(PB/GB)SA and Waterswap reaction coordinates, demonstrated the high affinity of the compound for enzyme active site residues. These findings can provide new avenues for designing potent compounds against notorious bacterial pathogens.

Acknowledgment

Authors are highly grateful to the Pakistan–United States Science and Technology Cooperation Program for granting the financial assistance.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.