332
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Benzothiazole analogs as potential anti-TB agents: computational input and molecular dynamics

, , , , , , , & show all
Pages 1830-1842 | Received 01 Feb 2018, Accepted 18 Apr 2018, Published online: 16 May 2018
 

Abstract

Biotin is very important for the survival of Mycobacterium tuberculosis. 7,8-Diamino pelargonic acid aminotransaminase (DAPA) is a transaminase enzyme involved in the biosynthesis of biotin. The benzothiazole title compounds were investigated for their in vitro anti-tubercular activity against two tubercular strains: H37Rv (ATCC 25,177) and MDR-MTB (multidrug-resistant M. tuberculosis, resistant to isoniazid, rifampicin, and ethambutol) by an agar incorporation method. The possible binding mode and predicted affinity were computed using a molecular docking study. Among the synthesized compounds in the series, the title compound {2-(benzo[d]thiazol-2-yl-methoxy)-5-fluorophenyl}-(4-chlorophenyl)-methanone was found to exhibit significant activity with minimum inhibitory concentrations of 1 μg/mL and 2 μg/mL against H37Rv and MDR-MTB, respectively; this compound showed the highest binding affinity (–24.75 kcal/mol) as well.

View correction statement:
Corrigendum

Acknowledgments

The authors are grateful to Deanship of Scientific Research, King Faisal University, Kingdom of Saudi Arabia for the financial support under grant number 17122011 and encouragement.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.