364
Views
28
CrossRef citations to date
0
Altmetric
Research Article

Density functional theory molecular modelling, DNA interactions, antioxidant, antimicrobial, anticancer and biothermodynamic studies of bioactive water soluble mixed ligand complexes

, , &
Pages 2498-2514 | Received 28 May 2018, Accepted 20 Jun 2018, Published online: 15 Nov 2018
 

Abstract

A novel series of bioactive water soluble mixed ligand complexes (1–5) [MII(L)(phen)AcO]. nH2O {where M = Cu (1) n = 2; Co (2), Mn (3), Ni (4), n = 4 and Zn (5) n = 2} were synthesized from 2-(2-Morpholinoethylimino) methyl)phenol Schiff base ligand (LH), 1, 10-phenanthroline and metal(II) acetate salt in a 1:1:1 stoichiometric ratio and characterized by several spectral techniques. The obtained analytical and spectral data suggest the octahedral geometry around the central metal ion. Density functional theory calculations have been further supportive to explore the optimized structure and chemical reactivity of these complexes from their frontier molecular orbitals. Gel electrophoresis result indicates that complex (1) manifested an excellent DNA cleavage property than others. The observed binding constants with free energy changes by electronic absorption technique and DNA binding affinity values by viscosity measurements for all compounds were found in the following order (1) > (2) > (4) > (5) > (3) > (LH). The binding results and thermodynamic parameters are described the intercalation mode. In vitro antioxidant properties disclose that complex (1) divulges high scavenging activity against DPPH, OH, O2−• NO, and Fe3+. The antimicrobial reports illustrate that the complexes (1–5) were exhibited well defined inhibitory effect than ligand (LH) against the selected different pathogenic species. The observed percentage growth inhibition against A549, HepG2, MCF-7, and NHDF cell lines suggest that complex (1) has exhibited superior anticancer potency than others. Thus, the complex (1) may contribute as potential anticancer agent due to its unique interaction mode with DNA.GRAPHICAL ABSTRACT

Communicated by Ramaswamy H. Sarma

Acknowledgments

Great acknowledgement is delivered to Department of Science and Technology (DST) – Science and Engineering Research Board (SERB), Government of India, New Delhi for the financial support granted with the Project Ref.No.SR/FT/CS – 117/2011 dated 29.06.2012 and we express deepest gratitude to the Managing Board, Dean, Principal and Chemistry Research Centre MSEC, Kilakarai for providing research facilities. RVS thanks the department of chemistry and the management of Madras Christian College for the support and encouragement.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.