535
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Molecular dynamics simulations provide insights into the origin of gleevec’s selectivity toward human tyrosine kinases

, , , , , & show all
Pages 2733-2744 | Received 20 Mar 2018, Accepted 15 May 2018, Published online: 01 Nov 2018
 

Abstract

Protein kinases are critical drug targets against cancer. Since the discovery of Gleevec, a specific inhibitor of Abl kinase, the capability of this drug to distinguish between Abl and other tyrosine kinases, such as Src, has been intensely investigated but the origin of Gleevec’s selectivity to Abl against Src is less studied. Here, we performed molecular dynamics (MD) simulations, dynamical cross-correlation matrices (DCCM), dynamical network analysis, and binding free energy calculations to explore Gleevec’s selectivity based on the crystal structures of Abl, Src, and their common ancestors (ANC-AS) and the two constructed mutation systems (AS→Abl and AS→Src). MD simulations revealed that the conformation of the phosphate-binding loop (P-loop) was altered significantly in the AS→Abl system. DCCM results unraveled that mutations increased anticorrelated motions in the AS→Abl system. Community network analysis suggested that the P-loop established special contacts in the AS→Abl system that are devoid in the AS→Src system. The binding free energy calculations unveiled that the affinity of Gleevec to AS→Abl increased to near the Abl level, whereas its affinity to AS→Src decreased to near the Src level. Analysis of individual residue contributions showed that the differences were located mainly at the P-loop. This study is valuable for understanding the sensitivity of Gleevec to human tyrosine kinases.

Communicated by Ramaswamy H. Sarma

Disclosure statement

The authors declare that they have no conflict of interest.

Additional information

Funding

This work was supported by National Natural Science Foundation of China [21778037]; Shanghai Health and Family Planning Commission [20154Y0058]; The Fundamental Research Funds for the Central Universities.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.