257
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Design of novel quinoline-aminopiperidine derivatives as Mycobacterium tuberculosis (MTB) GyrB inhibitors: an in silico study

, , , , , & show all
Pages 2913-2925 | Received 02 Feb 2018, Accepted 01 Jun 2018, Published online: 28 Dec 2018
 

Abstract

Tuberculosis (TB) is an infectious disease that causes a number of deaths, and the development of new, safer and more adequate TB inhibitors/drugs has become a necessity as well as a great challenge. Mycobacterial DNA gyrase B subunit has been identified to be one of the potentially underexploited drug targets in the field of anti-tubercular drug discovery. To design the novel and potent Mycobacterium tuberculosis (MTB) inhibitors, we performed molecular modeling studies that combined the 3D-QSAR, molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations. Forty eight quinoline-aminopiperidine inhibitors which act on DNA gyrase B subunit were used for constructing 3D-QSAR models. The results showed that the best CoMFA model had the high performance with q2= 0.643, r2 = 0.947, while the best CoMSIA model yielded q2= 0.536, r2 = 0.948. The contour map was in good agreement with the docking and MD simulations which strongly demonstrated that the molecular modeling was reliable. Based on this information, several potential compounds were designed and their inhibitory activities were also verified by the accomplished models and ADME/T predictions. We hope that our research could bring new ideas to facilitate the development of novel inhibitors with higher inhibitory activity for TB.

Communicated by Ramaswamy H. Sarma

Disclosure statement

The authors have no competing financial interests to declare.

Additional information

Funding

We appreciate the program of National Natural Science Foundation of China (NSFC, No. 21705064, 21275067) for the financial support of this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.