168
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Investigation of the probable homo-dimer model of the Xeroderma pigmentosum complementation group A (XPA) protein to represent the DNA-binding core

, & ORCID Icon
Pages 3322-3336 | Received 02 Jan 2018, Accepted 23 Aug 2018, Published online: 05 Dec 2018
 

Abstract

The Xeroderma pigmentosum complementation group A (XPA) protein functions as a primary damage verifier and as a scaffold protein in nucleotide excision repair (NER) in all higher organisms. New evidence of XPA’s existence as a dimer and the redefinition of its DNA-binding domain (DBD) raises new questions regarding the stability and functional position of XPA in NER. Here, we have investigated XPA’s dimeric status with respect to its previously defined DBD (XPA98-219) as well as with its redefined DBD (XPA98-239). We studied the stability of XPA98-210 and XPA98-239 homo-dimer systems using all-atom molecular dynamics simulation, and we have also characterized the protein–protein interactions (PPI) of these two homo-dimeric forms of XPA. After conducting the root mean square deviation (RMSD) analyses, it was observed that the XPA98-239 homo-dimer has better stability than XPA98-210. It was also found that XPA98-239 has a larger number of hydrogen bonds, salt bridges, and hydrophobic interactions than the XPA98-210 homo-dimer. We further found that Lys, Glu, Gln, Asn, and Arg residues shared the major contribution toward the intermolecular interactions in XPA homo-dimers. The binding free energy (BFE) analysis, which used the molecular mechanics Poisson–Boltzmann method (MM-PBSA) and the generalized Born and surface area continuum solvation model (GBSA) for both XPA homo-dimers, also substantiated the positive result in favor of the stability of the XPA98-239 homo-dimer.

Communicated by Ramaswamy H. Sarma

Acknowledgements

We would like to extend our deepest gratitude towards Tezpur University and University Grants Commission of India for the research grant. This research was also supported by the Department of Biotechnology (DBT) funded Bioinformatics Infrastructure Facility (BIF) in the Department of Molecular Biology and Biotechnology (MBBT) at Tezpur University, without which this study wouldn’t be possible. Lastly, we offer our gratitude towards Magnum proofreading services for the English corrections.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.